в ромбе у нас углы будут по 2 равны,то есть 2 угла A и два угла Б.А+В=180,и их отношение 1:5,то есть всего 6 частей..отсюда 180:6,углы 30 и 150 градусов..площадь ромба длина стороны умножить на высоту..сторона у нас 6.найдем высоту..для этого проведем ее..и получим треугольник.у которого углы 90,30 и 60 градусов..теперь применим теорему,что против угла в 30 градусов лежит катет равный половине гипотенузы,этим катетом искомым и будет высота,а гипотенуза это сторона..то есть высота = половине от 6,то есть 3..теперь найдем площадь она равна 3*6=18
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
Объяснение:
Объяснение:
4,7,10,13 см длины проволок.
1. Основное правило существования треугольников: сумма двух любых сторон должна быть больше, чем третья сторона (если нарисовать треугольник, это хорошо видно. Крайний случай, когда один из углов треугольника почти равен 180 град).
Из этого правила.
Возьмем проволоки 4, 7 и 13 cм. Тогда
4+7=11 < 13 (т.е. сумма сторон меньше 3ей, поэтому такого треугольника быть не может)
Возьмем проволоки 4, 7, 10. Тогда
4+7=11 > 10
7+10=17 > 4
4+10=14 > 7
Правило выполняется для любой из сторон, следовательно треугольник существует.
Из проволок можно собрать еще 2 треугольника
{4,10,13}, {7,10,13}, но для них правило выполняется, значит они существуют. Рисунки 2х прикрепил к ответу