Рассмотрим четырёхугольник ABCD.
По условию задачи имеем:
AB = BC и AD = DC.
Опустим высоту BH треугольника ABC из вершины B на основание AC.
Так как AB = BC, то треугольник ABC - равнобедренный и высота BH является одновременно и медианой, т.е. AH = CH.
Аналогично опустим высоту DG треугольника ADC из вершины D на основание AC.
Так как AD = DC, то треугольник ADC - равнобедренный и высота DG является одновременно медианой, т.е. AG = CG.
Так как AH = CH и AG = CG, то точки H и G совпадают.
BH и DG перпендикулярны AC и точки H и G совпадают.
Следовательно, BH и DG лежат на прямой перпендикулярной AC и BD является диагональю четырехугольника ABCD.
Итак получили, что диагонали AC и ВD перпендикулярны, что и требовалось доказать.
можете не благодарить
ответ: 4/1.
Объяснение:
По свойству биссектрисы треугольника имеем:
AK/KM = AB/BM = 3/2,
AL/LM = AC/CM = 4/1,
Кроме того:
S(ABK)/S(BKM) = (0,5*h*AK)/(0,5*h*KM) = AK/KM = 3/2,
то есть S(ABK) = (3/2)*S(BKM).
S(ACL)/S(CLM) = (0,5*h*AL)/(0,5*h*LM) = AL/LM = 4/1 = 4,
то есть S(ACL) = 4*S(CLM),
S(ABM)/S(ACM) = (0,5*h*BM)/(0,5*h*CM) = BM/CM = 2/1 = 2.
Кроме того: S(ABM) = S(ABK) + S(BKM)
S(ACM) = S(ACL) + S(CLM),
поэтому
( S(ABK) + S(BKM) )/( S(ACL) + S(CLM) ) = 2,
( (3/2)*S(BKM) + S(BKM) )/( 4*S(CLM) + S(CLM) ) = 2,
( (5/2)*S(BKM) )/( 5*S(CLM) ) = 2,
( (1/2)*S(BKM) )/S(CLM) = 2,
S(BKM)/S(CLM) = 2*2 = 4.
Противоположные грани куба параллельны.
Значит расстоянием между скрещивающимися диагоналями противоположных граней (АВ₁ и D₁C) будет расстояние между параллельными плоскостями - перпендикуляр, проведенный из любой точки одной плоскости к другой.
Ребро AD перпендикулярно боковым граням АВВ₁А₁ и DCC₁D₁.
Значит, АD - расстояние между параллельными плоскостями АВВ₁А₁ и DCC₁D₁. Следовательно
расстояние между прямыми АВ₁ и D₁C равно а.
Объяснение: