1. Т.к. прямые РМ и BD лежат в одной плоскости (ABD), их надо просто продлить до пересечения. N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒ PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС. KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD) Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС. Т.е. PL║AC. По теореме Фалеса CL:LD = AP:PD = 3:1
Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒
PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС.
KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD)
Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС.
Т.е. PL║AC.
По теореме Фалеса CL:LD = AP:PD = 3:1