Расстояние от точки до плоскости равно длине отрезка, проведенного к ней перпендикулярно.
М удалена от каждой вершины треугольника, следовательно, проекции прямых, соединяющих её с вершинами треугольника АВС, равны радиусу описанной окружности., а М проецируется в центр О этой окружности.
∠ВАС- вписанный, ∠ВОС - центральный и равен 2•∠АОС=60° по свойству вписанных углов.
Тогда ∆ ВОС равносторонний, радиус описанной окружности равен R=ВС=8.
∆ ВОМ прямоугольный, гипотенуза МВ=17, катет ВО=8
По т.Пифагора ( её Вы уже знаете) МО=15 см.
По т.синусов
2R=ВС:sin30°= 8:0,5=16⇒
R=8
Нахождение МО описано в первом варианте.
Объяснение:
можно лучший ответ
∠C=∠P, Б) ∠В=∠R, В) AC=QR, Г) BC=QR
2. У трикутнику АВС відрізок ВД є медіаною. Яка з наведених рівностей випливає з цієї умови?
А) АВ=ВС Б) ∠ВАД = 900 В) АД=ДС Г) ∠АДВ = 900.
3. Знайдіть периметр рівнобедреного трикутника, якщо його бічна сторона дорівнює 10см, а основа – 5 см.
4. АД – медіана рівнобедреного трикутника АВС з основою ВС. Чому дорівнює кут ВАС, якщо ∠САД = 400?
5. Знайдіть сторони рівнобедреного трикутника, якщо його периметр дорівнює 84см, а бічна сторона на 18см більша за його основу.
6. Відрізки АВ і СД перетинаються у точці О, яка є серединою кожного з них. ∠АВС = 600, ∠СДА = 300. Знайдіть градусну міру кута ВСД.
7. Доведіть рівність трикутників АВД і
а) 56 кв. см;
б) ... .
Объяснение:
а) Дано:
АВСD - р/б трапеция;
АВ=CD=5 см (боковые стороны);
AD и BC - основания ABCD;
АВ=17 см;
ВС=11 см;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) Рассмотрим прямоугольник (т. к. ВМ и CN - высоты АВСD) МВСN:
ВC=MN=11 см (как противоположные стороны параллелограмма) => АМ=DN=(AD-MN):2= (17 см - 11 см) : 2 = 6 см : 2 = 3 см.2) Рассмотрим прямоугольный треугольник (т. к. ВМ - высота) АВМ:
По теореме Пифагора: высота ВМ^2=АВ^2-АМ^2=5^2-3^2=25-9=16 => ВМ = корень из 16 = 4 см.3) Теперь можем найти площадь трапеции ABCD:
S (ABCD)= 1/2•(AD+BC)•BM= 1/2 • (17 см + 11 см) • 4 см = 1/2 • 28 см • 4 см = 14 см • 4 см = 56 кв. см.ответ: 56 кв. см.
б) Дано:
АВСD - р/б трапеция;
АВ=CD (боковые стороны);
AD и BC - основания ABCD;
АВ=8 см;
ВС=2 см;
Угол АDC=60°;
BM и CN - высоты АВСD.
Найти: S (ABCD).
1) ... .