1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
х(5х-6)=0
х1=0 или 5х-6=0
5х=6
х2=1,2
ответ: 0
2) 5х^2 - 6х=0
ответ:1,2
3) 25х^2 - 1=0
25х^2=1
х^2=1/25
х=√1/25
х1=1/5
х2=-1/5
ответ:-1/5
4) 5х^2 - 6х +1=0
х1/2=6+-√36-4*5*1/10=6+-√16/10= 6+-4/10
х1=6+4/10=10/10=1
х2=6-4/10=2/10=0,2
ответ:1
5) 5х^2 - 6х +2=0
D=√36-4*5*2/10=√36-40/10=√-4/10
ответ:D<0
6) 5х^2 - 6х +2=0
ответ: нет корней
7) 25х^2 - 6х +0,36=0
D=√36-4*25*0,36/50=√36-36/50=0/50=0
ответ: D=0
8) 25х^2 - 6х +0,36=0
x1/2=6+-√36-4*25*0,36/50=6+- √36-36/50=6+-0/50=6/50
x1=6+0/50=6/50=0,12
x2=6-0/50=6/50=0,12
ответ:2 корня