Так как каждое ребро пирамиды равно корень из 3, то эта пирамида является правильной так как она состоит из 4 правильных треугольников. Нам как раз и надо найти площадь любого из них, но ведь площадь полной поверхности это будет 4 площади любого из правильных треугольников данной пирамиды. Площадь правильного треугольника (формула) S=(а^2*корень из 3)/4, где а - сторона правильного треугольника. Получаем:4*("корень из 3"^2*корень из 3)/4 = 3*"корень из 3" (четверки сокращаются, а корень из 3 в квадрате равен 3 (для длин сторон)) ответ: 3*"корень из 3"
Начнем с самого простого: Сторона правильного шестиугольника равна радиусу описанной около него окружности (свойство). Но можно и так: диагонали правильного шестиугольника разбивают описанную окружность на 6 равных равносторонних треугольника (см. рисунок). Поэтому сторона этого шестиугольника равна радиусу описанной окружности. Rш=10см. Диагональ правильного четырехугольника (квадрата) равна диаметру описанной около него окружности (свойство). D=20см. Тогда его сторона равна Rк= 10√2см. Сторона правильного треугольника равна R*√3 (формула). Или в нашем случае 10√3. Но можно и без формулы: по теореме косинусов. a² = 2*R²-2R²*Cos120° или a²=200*(1+1/2) = 100*3. a=√300 = 10√3см. ответ: сторона треугольника равна 10√3см, четырехугольника10√2см и шестиугольника 10см.
Больший острый угол тот, который лежит против стороны=24
tg a=24/10=2,4