Угол САМ=58°
Угол АМС=58°
Угол АСМ=64°
Угол ВМК=58°
Угол МВК=64°
Угол МКВ=58°
Объяснение:
В связи с тем, что сторона АС равна стороне СМ мы понимаем, что треугольник АСМ равнобедренный.
В равнобедренном треугольнике углы при основании равны, а сумма углов треугольников равна 180°
В данном треугольнике углы при основании это угол САМ и угол АМС. Если САМ равен 58°, следовательно и угол АМС будет равен 58°
Углом при вершине в данном треуголнике является угол АСМ, он равен разности суммы углов и суммы двух других сторон, мы получаем:
180-(58+58)=64°
Перемещаемся на треугольник ВМК . Здесь, угол ВМК равен углу АМС , так как они вертикальные.
Отсюда мы получаем , что треугольники АМС и ВМК конгруэнтны.
Следовательно, угол МВК равен углу АСМ(64°), а угол МКВ равен углу САМ(58°).
Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN: .
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ: .
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .
Объяснение:
а{– 4; 5} и b{5; – 4}.
a*b=-4*5+5*(-4)=-40
|а|=√16+25=√41
|b|=√25+16=√41
cos(a;b)=-40/(√41*√41)=-40/41