Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
8.1 Площадь равнобедренной трапеции равна: S=(a+b)/2*h, где a и b - основания трапеции (11 и 27) h - высота Отсюда, высота равна: h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15 Т.е. BE (см. рисунок 1) = 15 AE=FD=(27-11):2=16:2=8 По теореме Пифагора: AB²=BE²+AE²=15²+8²=225+64=289 AB=√289=17 Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17 Периметр — это сумма боковых сторон и оснований, который равен: Р=11+27+17+17=72 ответ: периметр равен 72.
8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.
R=10
т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°
R=a/2sin60=a/√3
тогда a=R√3=10√3
h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15 ответ: высота правильного треугольника равна 15
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28. Пусть х - длина ВN. Тогда, ВС=х+32 Составим и решим пропорцию: MN:AC=BN:BC 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби) 17=51х/(х+32) 17*(x+32)=51x 17x+544=51x 17x-51x=-544 -34x=-544 34x=544 x=16 ответ: BN=16
Объяснение:
вот надеюсь тебе
п/с проект не мой