Объяснение:
общем случае, геометрическое место точек формулируется параметрическим предикатом, аргументом которого является точка данного линейного Параметры предиката могут носить различный тип. Предикат называется детерминантом геометрического места точек. Параметры предиката называются дифференциалами геометрического места точек (не путать с дифференциалом в анализе).
Роль дифференциалов во введении видовых различий в фигуру. Количество дифференциалов может быть любым; дифференциалов может и вовсе не быть.
Если заданы детерминант {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ), где {\displaystyle M}M — точка, {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots — дифференциалы, то искомую фигуру {\displaystyle A}A задают в виде: «{\displaystyle A}A — геометрическое место точек {\displaystyle M}M, таких, что {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots )». Далее обычно указывается роль дифференциалов, им даются названия применительно к данной конкретной фигуре. Под собственно фигурой понимают совокупность (множество) точек {\displaystyle M}M, для которых для каждого конкретного набора значений {\displaystyle a,\;b,\;c,\;\ldots }a,\;b,\;c,\;\ldots высказывание {\displaystyle P(M,\;a,\;b,\;c,\;\ldots )}P(M,\;a,\;b,\;c,\;\ldots ) обращается в тождество. Каждый конкретный набор значений дифференциалов определяет отдельную фигуру, каждую из которых и всех их в совокупности именуют названием фигуры, которая задаётся через ГМТ.
В словесной формулировке предикативное высказывание озвучивают литературно, то есть с привлечением различного рода оборотов и т. д. с целью благозвучия. Иногда, в случае детерминантов, вообще обходятся без буквенных обозначений.
Пример: параболу зададим как множество всех таких точек {\displaystyle M}M, что расстояние от {\displaystyle M}M до точки {\displaystyle F}F равно расстоянию от {\displaystyle M}M до прямой {\displaystyle l}l. Тогда дифференциалы параболы — {\displaystyle F}F и {\displaystyle l}l; детерминант — предикат {\displaystyle P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l))}P(M,\;F,\;l)=(\rho (M,\;F)=\rho _{l}(M,\;l)), где {\displaystyle \rho }\rho — расстояние между двумя точками (метрика), {\displaystyle \rho _{l}}\rho _{l} — расстояние от точки до прямой. И говорят: «Парабола — геометрическое место точек {\displaystyle M}M, равноудалённых от точки {\displaystyle F}F и прямой {\displaystyle l}l. Точку {\displaystyle F}F называют фокусом параболы, а прямую {\displaystyle l}l — директрисой».
1. Рассмотрим 3-ки NPM и RPQ:
<MNP = <PQR (по усл.)
NP = PQ (по усл.)
<NPM = <RPQ (вертикальные)
След-но,
тр. NPM = тр. RPQ (по стороне и двум прилежащим к ней углам)
21. Тр. CDE — равнобедренный (CD = DE)
значит,
<FCD = <HED
2. Рассмотрим 3-ки CFD и EHD:
CD = ED (по усл.)
<CDF = <EDH (по усл.)
<FCD = <HED (по доказанному)
След-но,
тр. CFD = тр EHD (по стороне и двум прилежащим углам)
31. Рассмотрим 3-ки QOR и POR:
RO — общая
<QOR = <POR (по усл.)
QO = PO(по усл.)
След-но,
тр QOR = тр POR (по двум сторонам и углу между ними)
41. <ВАС = <ВСА (по усл.), значит:
тр. АВС — равнобедренный (АВ = ВС)
2. <КАВ = 180 - <ВАС (смежные)
<NCB = 180 - <BCA (смежные)
т.к. <ВСА = <ВАС, то:
<КАВ = <NCB
3. Рассмотрим 3-ки КАВ и NCB:
KA=CN (по усл)
AB = BC (по доказанному)
<КАВ = <NCB(по доказанному)
След-но, тр. КАВ = тр NCB (по двум сторонам и углу между ними)
51. <А = <D (накрест лежащие при прямых АС и ЕD и секущей АD)
значит,
АС || ED
2. Т. к. АС || ED, то:
<С = <Е
3. <АВС = <DBE (вертикальные)
4. Рассмотрим 3-ки АВС и DBE:
Против равных углов лежат равные стороны, значит:
AB = BD
CB = BE
ED = AC
След-но,
тр АВС = тр DBE (по трем сторонам)
61. Рассмотрим 3-ки ADB и ВСD:
BD — общая
<АDB = <CBD (по усл)
<ABD = <BDC (по усл)
След-но,
тр ABD = тр BCD (по стороне и прилежащим к ней углам)
40 60 80
Объяснение:
Сумма углов треугольника = 180 градусов.
Всего 2+3+4=9 частей
180/9=20 градусов - часть
Первый угол 20*2=40 градусов
Второй угол 20*3=60 градусов
Третий угол 20*4=80 градусов