В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27
Площадь боковой поверхности усеченной пирамиды можно найти по формуле:
Sбок=(S-s):cosa
S - площадь нижнего основания
s - площадь верхнего основания
a - двугранный угол при ребре нижнего основания, т.е. угол между боковой гранью и плоскостью нижнего основания.
Площадь равностороннего треугольника находим по формуле:
S=a^2*√3/4
S=8^2* √3/4=16 √3
s=4^2* √3/4=4 √3
cos30= √3/2
S=(16 √3 -4√3):( √3/2)=12 √3 *(2/ √3)=24 кв см