Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.
Пусть а - сторона меньшего треугольника, b - большего, R - радиус окружности.
По теореме синусов a = 2Rsin(60)= Rкорень(3). (Это можно получить сотней без теоремы синусов)
Для большего треугольника R - радиус вписанной окружности.
(Для правильного треугольника центры вписанной и описанной окружности совпадают с точкой пересечения медиан, и отрезок медианы - любой - от вершины до точки пересечения медиан - это радиус описанной окружности, а от точки пересечения медиан до стороны - это радиус вписанной окружности. Поскольку точка пересечения медиан делит медиану на отрезки в пропорции 2/1, то радиус описанной окружности у правильного треугольника в два раза больше радиуса вписанной окружности)
Поэтому у большего треугольника радиус описанной окружности 2R, и b = 4Rsin(60).
Отсюда b = 2a, так же относятся и периметры, а отношение площадей равно 4.
Объяснение:
В прямоугольной треугольника катет, лежащий против угла в 30°, равен половине гипотенузы:
а = 6 : 2 = 3 см.
Второй катет найдем по теорема Пифагора:
a 2 + b 2 = c 2, где a, b - катеты, c – гипотенуза.
b 2 = 6 2 – 3 2
b = √ ( 6 2 – 3 2 )
b = √ 25
b = 5 см.
Катеты равны 3см и 5 см.