Я не знаю как тебе нужно оформить, но начни доказательство с того, что диаметр - это хорда, проходящая через центр окружности.
1). Диаметры равны и пересекаются в середине (т. е. точкой пересечения делятся пополам). Из этого следует, что:
АО=ОС=ВО=OD (т. к. это радиусы окружности).
2). Пусть чентр окружности - точка О.
3). Рассмотрим треугольники АОС и BOD.
Они равны по первому признаку равенства треугольников (по двум сторонами и углу между ними).
Угол АОС равен углу BOD (т. к. они вертикальные)
Поэтому ВD и АС равны. И там дальше продолжай доказывать, исходя из того, что написано...
(r + R)^2 = d^2 + (R - r)^2; d = 2√(R*r);
2. В данном случае есть ТРИ пары окружностей радиуса x, r = 4; R = 9;
причем сумма длин внешних касательных между первой и второй, первой и третьей равна длине внешней касательной между второй и третьей.
d = d1 + d2;
2√(R*x) + 2√(r*x) = 2*√(R*r);
x = R*r/(√R + √r)^2 = 9*4/(3 + 2)^2 = 36/25;