V=πr²*h; πr² - площадь основания цилиндра, h - высота
V=πr²*h , V=π * OB² * OO₁
Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.
OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.
Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :
(1) по теореме Пифагора (с²=a²+b²) можно найти сторону ОВ как гипотенузу треугольника НОВ:
ОВ²=d²+HB²; ОВ = √(d²+HB²)
(2) Либо через sin угла α (который ∠АОВ), не зря же нам его величину α дали.
sinα - это отношение противолежащего этому углу катета к гипотенузе
[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α
то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).
Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ
Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.
cosφ - отношение прилежащего катета к гипотенузе, то есть
cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ
Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h
1. По формуле средней линии трапеции имеем: (а + b) / 2 = 10 где a, b - верхнее и нижнее основания откуда получаем: a + b = 20 а = 20 - b
2. Находим площадь S₁ верхней части трапеции, которая по условию составляет 3 части S₁ = (10+а)/2 * h Находим площадь S₂ нижней части трапеции, которая по условию составляет 5 частей S₂ = (10 + b) /2 h h - высота каждой из вышеуказанных трапеций, которая равна половине высоты данной основной трапеции.
3. Получаем пропорцию S₁ : S₂ = 3 : 5 Подставив вместо S₁ и S₂ их выражения, имеем (10+а)/2 * h : (10 + b) /2 h = 3 : 5 Сократив, имеем (10 + a) * 5 = (10 + b) *3 Подставляем вместо а выражение а = 20 - b (10 + 20 - b) *5 = (10 + b) *3 (30 - b) * 5 = 30 + 3b 150 - 5b = 30 + 3b 5b + 3b = 150 - 30 8b = 120 b = 120 : 8 b = 15 - нижнее основание а = 20 - b а = 20 - 15 = 5 a = 5 - верхнее основание ответ: а = 5; b = 20
1. По формуле средней линии трапеции имеем: (а + b) / 2 = 10 где a, b - верхнее и нижнее основания откуда получаем: a + b = 20 а = 20 - b
2. Находим площадь S₁ верхней части трапеции, которая по условию составляет 3 части S₁ = (10+а)/2 * h Находим площадь S₂ нижней части трапеции, которая по условию составляет 5 частей S₂ = (10 + b) /2 h h - высота каждой из вышеуказанных трапеций, которая равна половине высоты данной основной трапеции.
3. Получаем пропорцию S₁ : S₂ = 3 : 5 Подставив вместо S₁ и S₂ их выражения, имеем (10+а)/2 * h : (10 + b) /2 h = 3 : 5 Сократив, имеем (10 + a) * 5 = (10 + b) *3 Подставляем вместо а выражение а = 20 - b (10 + 20 - b) *5 = (10 + b) *3 (30 - b) * 5 = 30 + 3b 150 - 5b = 30 + 3b 5b + 3b = 150 - 30 8b = 120 b = 120 : 8 b = 15 - нижнее основание а = 20 - b а = 20 - 15 = 5 a = 5 - верхнее основание ответ: а = 5; b = 20
Объяснение:
Вообщем смысл в следующем.
Основная формула объёма цилиндра:
V=πr²*h; πr² - площадь основания цилиндра, h - высота
V=πr²*h , V=π * OB² * OO₁
Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.
OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.
Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :
(1) по теореме Пифагора (с²=a²+b²) можно найти сторону ОВ как гипотенузу треугольника НОВ:
ОВ²=d²+HB²; ОВ = √(d²+HB²)
(2) Либо через sin угла α (который ∠АОВ), не зря же нам его величину α дали.
sinα - это отношение противолежащего этому углу катета к гипотенузе
[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α
то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).
Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ
Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.
cosφ - отношение прилежащего катета к гипотенузе, то есть
cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ
Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h