На самом деле плоскость проходит не через С, а через B и N. На рисунке она правильно изображена. Плоскость АМС сечение пересекает по прямой, параллельной АС. Отсюда сразу следует, что (если обозначить К точку пересечения МА и сечения), что поскольку KN II AC, АК/КС = CN/NM = 1/2;
Поэтому, во первых, KN = АC*2/3) (из подобия треугольников АМС и MKN), и - во вторых, (если обозначить Р - точку пересечения высоты пирамиды МО и сечения) МР/РО = 2/1, то есть Р - точка пересечения медиан треугольника MBD. То есть прямая ВР, лежащая в плоскости сечения - это медиана треугольника MBD. То есть сечение делит MD пополам (надо еще обозначить Q - середина MD).
Легко видеть, что KN перпендикулярно плоскости MBD (обоснование! - самостоятельно), то есть KN перпендикулярно BQ. Таким образом, в четырехугольнике BKQN, который получается в сечении, диагонали KN и BQ взаимно перпендикулярны.
Площадь BKQN равна половине произведения диагоналей, S = KN*BQ/2; KN = 2√2/3; осталось найти BQ.
BQ - медиана в равнобедренном треугольнике BMD со сторонами BM = MD =2; BD = √2;
(2*BQ)^2 = 2*(BD)^2 + MD^2 = 8; BQ = √2; (занятно, что треугольник BQD подобен треугольнику MBD);
S = √2*(2√2/3)/2 = 2/3.
Если <D=<B=120°, то <A=<C=180-120=60°
Рассмотрим прямоуг. треугольник AMB. В нем <ABM=180-(60+90)=30°
Значит, сторона AM лежит против угла в 30° и она в 2 раза меньше гипотенузы AB, т.е.
АМ=4:2=2 см. Тогда
MD=AD-AM=4-2=2 см
Аналогично, в прямоуг. треугольнике BNC <CBN=180-(60+90)=30°
Следовательно, <MBN=<ABC-(<ABM+<CBN)=120-(30+30)=60°
Рассмотрим треугольник ABD. Он - равнобедренный (AD=AB), значит, <ADB=<ABD.
Но <A = 60°, тогда <ADB=<ABD.= (180-<A)/2=(180-60)/2=60°, т.е. треугольник ABD - равносторонний, тогда
BD=AB=4 см
Рассмотрим треугольник MBN.
Т.к. Δ AMB=ΔCNB (по 1-му признаку, AB=BC, AM=CN, <A=>C), то BM=BN и
ΔMBN - равнобедренный. Но <MBN=60°, значит,
<BMN=<BNM=(180-60)/2=60°А это означает, что ΔMBN - равносторонний
все доказали