Пять сторон описанного около окружности шестиугольника относятся (в последовательном порядке) как 3: 4: 5: 7: 8. найдите оставшуюся сторону этого шестиуольника, если его периметр равен 80.
Пусть у нас введна некая мера длины t, такая, что длины сторон 3*t, 4*t, 5*t, 7*t, 8*t. Шестая сторона нам не известна.
Пусть x, y, z, u, v, w - различные отрезки сторон от вершины до точки касания, причем выраженные в системе измерения длины t (то есть длина отрезка в сантиметрах равна x*t, y*t, и так далее). Стороны равны сумме двух таких отрезков каждая, включая шестую. Запишем 5 известных соотношений.
x + y = 3;
y + z = 4;
z + u = 5;
u + v = 7;
v + w = 8;
нам надо выяснить, чему равно w + x;
последовательно исключаем переменные y z u v;
x - z = -1; Вычли из первого второе.
x + u = 4; Прибавили третье.
x - v = -3; Вычли четвертое.
x + w = 5; Прибавили пятое. Значит шестая сторона равна третьей.
Итак, пропорцию можно закончить так 3:4:5:7:8:5; :)))
Мы касаемся в этой задаче очень интересного круга задач, связанных с треугольником, у которого один из углов равен 60°. Оказывается, у такого треугольника (хотя в этой задаче это и не потребуется), центр описанной окружности, центр вписанной окружности, ортоцентр (то есть точка пересечения высот), а также две вершины лежат на одной окружности, которая получается из описанной симметрией относительно стороны треугольника.
Возвращаемся к нашей задаче. Вспоминаем формулу, по которой ищется угол между биссектрисами двух углов треугольника. Он равен 90°+ половина третьего угла (доказывается это очень просто, если Вы знаете, чему равна сумма углов треугольника, Вы с этой задачей справитесь). В нашем случае угол между биссектрисами AA_1 и BB_1 будет равен 90+30=120°. Замечаем, что ∠A_1HB_1+∠C=180° ⇒ вокруг четырехугольника CA_1HB_1 можно описать окружность. Остается вспомнить, что биссектрисы в треугольнике пересекаются в одной точке ⇒CH делит угол A_1CB_1 пополам, а тогда дуги, на которые опираются эти половинки, равны, а тогда и хорды A_1H и B_1H равны, что и требовалось.
Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
смешная задачка.
Пусть у нас введна некая мера длины t, такая, что длины сторон 3*t, 4*t, 5*t, 7*t, 8*t. Шестая сторона нам не известна.
Пусть x, y, z, u, v, w - различные отрезки сторон от вершины до точки касания, причем выраженные в системе измерения длины t (то есть длина отрезка в сантиметрах равна x*t, y*t, и так далее). Стороны равны сумме двух таких отрезков каждая, включая шестую. Запишем 5 известных соотношений.
x + y = 3;
y + z = 4;
z + u = 5;
u + v = 7;
v + w = 8;
нам надо выяснить, чему равно w + x;
последовательно исключаем переменные y z u v;
x - z = -1; Вычли из первого второе.
x + u = 4; Прибавили третье.
x - v = -3; Вычли четвертое.
x + w = 5; Прибавили пятое. Значит шестая сторона равна третьей.
Итак, пропорцию можно закончить так 3:4:5:7:8:5; :)))
Осталось вычислить t.
80 = t*(3 + 4 + 5 + 7 + 8 + 5) = 32*t; t = 10/4,
Шестая сторона будет 50/4, то есть 12,5