75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
Мы знаем, что cos(180-a)=-cosa.
Пусть сторона АВ=х, тогда сторона ВС=22-х (так как сумма сторон АВ+ВС=22, поскольку ПЕРИМЕТР равен 42, а сторона АС=20).
В треугольнике АВС по теореме косинусов имеем:
АВ(квадрат)=АМ(квадрат)+ВМ(квадрат)-2*АМ*ВМ*Cosa. (1)
В треугольнике ВМС по этой же теореме:
ВС^2=МС^2+ВМ^2-2*МС*ВМ*Cos(180°-a) или
ВС^2=МС^2+ВМ^2+2МС*ВМ*Cosa. (2).
Представим в (1) и (2) известные значения и просуммируем оба уравнения.
Тогда получим:
х^2=125-100Cosa + (22-x)^2=125+100Cosa равно
х^2+(22-х)^2=250. Отсюда имеем квадратное уравнение, решая которое находим х.
х^2-22х+117=0.
Х1=11+√(121-117)=13.
Х2=11-2=9.
ответ: боковые стороны треугольника равны 13 и 9.
P.S. Извиняюсь за текст. Планшетом еще не достаточно овладел.