В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, если большее основание равно 12 корней из 3, а один из углов трапеции равен 60 градусов. Подробно свойства, теоремы, формулы
Обозначим трапецию АВСD, AB=CD, АD=12√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=6√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠АВН=180°-90°-60°=30°. Катет АН=АВ:2=3√3. ⇒ DH=AD-AH=12√3-3√3=9√3. Высота ВН=АВ•sin60°=6√3•(√3/2)=9. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=9•9√3=81√3 (ед. площади)
Теорема: "Если на одной стороне угла отложить равные отрезки и через их концы провести параллельные прямые, пересекающие другую сторону угла, то и на этой стороне угла отложатся равные между собой отрезки". Пусть дан отрезок АВ любой ОПРЕДЕЛЕННОЙ длины. Из точки начала данного отрезка А проводите прямую АС, образующую угол с данным отрезком. На этой прямой циркулем откладываете 5 РАВНЫХ отрезков ЛЮБОЙ длины. Конец q последнего (пятого) отрезка соединяете с концом В данного Вам отрезка. Затем через концы e - h первых четырех отрезков проводите прямые, параллельные первой qB. Точки пересечения этих прямых с данным Вам отрезком и дадут Вам точки деления отрезка на 5 равных частей. Как ПОСТРОИТЬ прямую, параллельную данной? Один из для нашего случая: 1. Проводим окружность 1 радиуса qh c центром в точке q (конец 5-го отрезка) на прямой АС. 2. Проводим окружность 2 радиуса qh c центром в точке m (точка пересечения окружности 2 с прямой qB). 3. Проводим окружность 3 радиуса qh c центром в точке h на прямой АС. 4. Через точки h и n (точка пересечения окружностей 2 и 3) проводим прямую, которая и будет параллельна прямой qB, поскольку фигура hqmn -ромб по построению, так как все стороны равны радиусу qh.
Сделаем рисунок. Для простоты оставим на рисунке только диаметры шаров. Все 5 шаров касаются попарно друг друга. Точки их касания лежат на серединах отрезков, соединяющих центры шаров. Эти отрезки образуют правильную четырехугольную пирамиду, все ребра которой равны 2r. Половина диагонали квадрата, составленного из отрезков, соединяющих центры четырех шаров (основание пирамиды), равна DO=r√2. Тогда ВО (высота пирамиды) равна по Пифагору из треугольника DOB: ВО=√(DB²-DO²) или ВО=√(4r²-2r²) =r√2. Точка О (центр квадрата) расположена на расстоянии r от плоскости, на которой лежат 4 шара. Точка В (центр пятого шара) - на расстоянии r от верхней точки М этого шара. Тогда искомое расстояние MN=BO+2r или MN=r√2+2r = r(√2+2). ответ: искомое расстояние равно r(√2+2).
Обозначим трапецию АВСD, AB=CD, АD=12√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=6√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠АВН=180°-90°-60°=30°. Катет АН=АВ:2=3√3. ⇒ DH=AD-AH=12√3-3√3=9√3. Высота ВН=АВ•sin60°=6√3•(√3/2)=9. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=9•9√3=81√3 (ед. площади)