Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
Теорема синусов: в треугольнике отношение стороны к синусу противолежащего угла - величина постоянная. a : sin α = b : sin β sinβ = b · sin α / a По найденному синусу угла по таблице находим угол.
1) a = 3 м , b = 5 м , α = 30 ° sin β = 5 · sin 30° / 3 = 5 · 1/2 / 3 = 5/6 ≈ 0,8333 β ≈ 56°
2) a = 8 м , b = 7 м , α = 60° sin β = 7 · sin 60° / 8 = 7 · √3/2 /8 = 7√3/16 ≈ 0,7578 β ≈ 49°
3) a = 2√2 см , b = 3 см , α = 45° sin β = 3 · sin 45° / (2√2) = 3 · √2/2 / (2√2) = 3/4 = 0,75 β ≈ 49°
4) a = 6 см , b = 2√3 см , α = 120° sin β = 2√3 · sin 120° / 6 = √3 · (√3/2) / 3 = 3 / 6 = 1/2 = 0,5 β = 30°
Объяснение:
Т.к. треугольник прямоугольный , то один угол 90°. Найдем третий угол 180°-90°-50°=40°