М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kostyafadeev9
kostyafadeev9
09.12.2022 08:46 •  Геометрия

Бічна сторона трапеції, що дорівнює 16 см, утворює з більшою
основою кут 60°. Знайти периметр трапеції, якщо менша основа
дорівнює 10 см, а друга бічна сторона — 9 см

👇
Открыть все ответы
Ответ:
topovyjpocan
topovyjpocan
09.12.2022

Какой многоугольник не имеет диагоналей?

- - -

ответ : треугольник.

- - -

Почему?

Количество диагоналей многоугольника вычисляется по формуле -

N=\frac{n(n-3)}{2}

Где N - количество диагоналей многоугольника, n - количество сторон многоугольника.

В нашем случае N = 0. Подставляем в данную формулу это значение и находим чему равно n -

0=\frac{n(n-3)}{2}\\\\0*2=n(n-3)\\\\n(n-3)=0\\\\\\\left \{ {{n=0} \atop {n-3=0}} \right. =n=3

Уравнение имеет два корня. Естественно, что n ≠ 0, так как многоугольника с количеством сторон, равным 0, 1, 2 не существует. То есть n = 0 не удовлетворяет условию. Поэтому, только остаётся, что n = 3.

4,5(40 оценок)
Ответ:
Nerzul2828818
Nerzul2828818
09.12.2022

Задача:

Плоскости прямоугольного треугольника ABC (∠C = 90°) и равнобедренного треугольника ABM (AM=BM) перпендикулярны. Средние линии прямоугольного треугольника, параллельные катетам, равны 6 и 8. Найдите расстояние между точками M и C, если угол наклона отрезка BM плоскости ABC равен 60°.

Пусть отрезок МО — перпендикуляр, опущенный на проскость ABD, пренадлежащий плоскости ACB. Отрезок МС — наклонная.

Р-м ΔABC:

Средняя линия треугольника параллельна основанию и равна его половине. Пусть OH = 6, тогда OG = 8.

    BC = OH*2 = 6*2 = 12

    AC = OG*2 = 8*2 = 16

AC и BC — катеты прямоугольного треугольника, ищем гипотенузу по т. Пифагора:

    AB² = BC²+AC²

    AB = √(12²+16²) = √(144+256) = √400 = 20

OC — проекция наклонной MC на плоскость АВС, OC ⊥ AB. Рассмотрев прямоугольный ΔOCH (∠OHC = 90°), ищем длину гипотенузы ОС по т. Пифагора:

    OC = √(CH²+OH²) = √(8²+6²) = √(64+36) = √100 = 10

Р-м ΔАВМ:

Углы при основании равнобочного треугольника равны: ∠MBO = ∠OAM = 60°. Не трудно вычислить, что угол вершины М также равен 60°, откуда следует, что ΔАВМ — равносторонний:

    AB = BM = MA = 20.

Отрезок МО — перпендикуляр к плоскости АВС и высота, т.к ΔABM равнобедренный.

Рассмотрев прямоугольный ΔBMO (∠BOM = 90°), находим длину отрезка МО (катета) по т. Пифагора:

    MО = √(BM²−BO²) = √(20²−10²) = √(400−100) = √300 = √100·√3 = 10√3

Р-м: ΔMOC:

∠MOC = 90°, т.к отрезки МО и ОС принадлежат перпендикулярным плоскостям. Ищем длину гипотенузы МС (она же — расстояние между точкаими М и С) по т. Пифагора:

    MC = √(OC²+OM²) = √(10²+(10√3)²) = √(100+100·3) = √400 = 20.

Расстояние между точками М и С равно 20.

Задача:

Два равнобедренные прямоугольные треугольника ABC и ABD, которые имеют общую гипотенузу AB, лежат в перпендикулярных плоскостях. Найдите длину отрезка CD, если AB = 8√2.

Пусть отрезок СО, принадлежащий плоскости ABC, — перпендикуляр, опущенный на плоскость ABD. Тогда OD — проекция наклонной CD.

Если одна из сторона равнобедренного прямоугольного треугольника равна стороне другого равнобедренного прямоугольного треугольника, то такие треугольники равны.

Р-м ΔАВС:

АС = СВ. ∠C — вершина, равна 90°. Острые угли равны, т.к треугольник равнобочный. Сумма острых углов равна 90°, значит оба они по 45°. ОС — высота, делящая основу АВ пополам.

    AO = OB = (8√2)/2 = 4√2

Р-м ΔАОС:

∠C = 90°, тогда угол АСО = 180−(90+45) = 45°.

Следовательно все углы равны, треугольник равносторонний:

    AC = CB = CO = 4√2

Аналогично для ΔABD:

Высота OD делит треугольник на два равных равносторонних со сторонами 4√2.

Р-м ΔCOD:

∠COD = 90°, т.к. отрезки (катеты) принадлежат перпендикулярным плоскостям. Ищем длину отрезка CD (гипотенузы) по т. Пифагора:

    CD = √(OC²+OD²) = √((4√2)²+(4√2)²) = √(16·2+16·2) = √64 = 8.

Длина отрезка CD равна 8.


ОЧЕНЬ ЗАДАНИЯ Площини прямокутного трикутника ABC (∠C=90°) і рівнобедреного трикутника ABM (AM=BM) п
ОЧЕНЬ ЗАДАНИЯ Площини прямокутного трикутника ABC (∠C=90°) і рівнобедреного трикутника ABM (AM=BM) п
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ