Гострий кут прямокутного трикутника дорівнює 20.Знайдіть кут між бісектрисою та медіаною трикутника,які проведені з вершини кута
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
36,88 см
Объяснение:
1. Сечение, которое проходит через образующую и центр основания цилиндра, образует прямоугольник, одна сторона которого равна диаметру основания цилиндра, а вторая - его образующей.
Таким образом, первая сторона равна:
4 * 2 = 8 см.
Вторая сторона, согласно условию, равна 36 см.
2. Рассчитаем, по теореме Пифагора, диагональ этого сечения, являющегося по форме прямоугольником со сторонами 8 и 36 см:
d = √ (8^2 + 36^2) = √ (64+1296) = √ 1360 = √ (16 * 85) = 4 √ 85 ≈ 36,88 см
ответ: 36,88 см
Острый угол прямоугольного треугольника равен 20°.Найти угол между биссектрисой и медианой проведенных из вершины прямого угля .
Дано: Пусть ∠С =90° , ∠А =20° ,
∠LCA =∠LCB =∠АBС /2 =45° (CL_биссектриса )
AM =BM =AB/2 (CM_медиана)
-----------
∠LCM - ?
Решение : CM = AB/2 ( Медиана прямоугольного треугольника , проведённая из вершины прямого угла, равна половине гипотенузы), т.е. CM =AM ⇒ ΔMCA (а также ΔMCB ) равнобедренный ,поэтому ∠MCA = ∠A = 20° , следовательно
∠LCM =∠LCA -∠MCA =45° -20° =25° .