РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
некие полезные вещи:))
Пусть есть правильный n-угольник. Его можно разбить на n равнобедренных треугольников, у которых основание а (сторона), а угол при вершине 2*pi/n;
если h - высота к основанию такого треугольника, то h/(a/2) = ctg(pi/n);
поэтому Sn = n*(a/2)^2*ctg(pi/n);
В частности S6 = 6*(a/2)^2*ctg(pi/6); S3 = 3*(A/2)^2*ctg(pi/3); подставляем все что известно и приравниваем, имеем
(A/2)^2 = 2*(2*√6)^2*ctg(pi/6)/ctg(pi/3);
учтем, что ctg(pi/6) = tg(pi/3) =1/ctg(pi/3)= √3;
(A/2)^2 = 144, A = 24.