Т.к один из углов при основании равен 60, следовательно и другой угол равен 60, следовательно в сумме два угла при основании равны 120, 360-120=240, следовательно два угла равны по 60, и другие два по 120 градусов, т.к это равнобедренный треугольник. Значит боковые стороны равны. Периметр равнобедренной трапеции сумма всех ее сторон. Если провести две высоты из улов, то мы получим прямоугольник и ее основания равны 15см, дальше через синус острого угла равного 60 градусам, находим боковые стороны прямоугольного треугольника, полученного нами, он равен: sin60=X:17 ( это мы нашли катет прямоугольного треугольника, 49-15=34, 34:2=17), дальше синус 60=0,9, значит: 0,9=X:17, отсюда x=0,9*1,5=1,35см сторона BH1 (ну это трапеция ABCD, проводим высоты BH1 и CH2, получим прямоугольные треугольники ABH1 и CDH2), отсюда AH1=17, значит DH2 тоже, BH1=CH2=1,35, отсюда по теореме Пифагора находим гипотенузу AB в квдрате=289+1,8225=290,8225, квадратный корень этого числа=17,05см. Отсюда периметр=17,05+17,05+15+49=98,1. Нет нельзя описать, и вписать окружность. Надеюсь все понятно, и я
Угол с равен 120 градусов и треугольник авс равнобедренный, то углы а и в равны между собой и равны 30 градусам (сумма углов треугольника равна 180 градусов) высота равнобедренного треугольника делит его основание пополам, получается, что ан = вн = 6см косинус угла в 30 градусов равен корню из 3/2 косинус - отношение прилежащего катета к гипотенузе, т. е. вн / вс = корень из 3/2 зная вн, можем найти вс (гипотенузу) вс = 6 / (корень из 3 / 2) (под корнем только 3) по теореме пифагора, квадрат гипотенузы равен сумме квадратов катетов, т. е. вс2 = вн2 + сн2 зная вс и вн, можем найти сн (собственно, высоту) сн2 = вс2 - вн2 сн2 = (6 / (корень из 3 / 2))2 - (6 в квадрате) сн2 = (12 / корень из 3)2 - 36 сн2 = 144/3 - 36 сн2 = 48 - 36 сн2 = 12 сн = корень из 12