1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
По условию МК=КР, => ЕМ=ЕР(равные наклонные имеют равные проекции). ΔМЕР-равнобедренный. расстояние от точки Е до прямой МР-это перпендикуляр, проведенный из вершины равнобедренного треугольника к основанию является медианой(7 класс). (точку пересечения перпендикуляра и стороны МР обозначим буквой Д). рассмотрим ΔЕКД: 1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости) 2. ЕК=8см 3. ЕД=2√41 4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2 КД^2=164-64, КД^2=100, рассмотрим ΔМДК: 1. <МДК=90 2. МД=1/2МР, МД=(1/2)*2√21, МД=√21 3. КД=10 4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100, ответ: МК=11
180°-(100°+45°)= 180°-145°= 35°
В-дь: г) 35°