Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.
Sсферы = 4πR²
a) R= 10R
Sсферы = 4π(10R)²= 400πR² - площадь сферы увеличится в 100 раз
б) R= R/2
S сферы = 4π(R/2)² = 4πR²/4 = πR² - площадь сферы уменьшится в 4 раза