Берілген: Δ АВС-изоссельдер
∠В = 112 ° - сыртқы бұрыш
Табу бұрыштары ДАВС : ∠АВС -? ,ВС VSA -? , ∠Сіз-?
Шешімі.
Δ АВС қарастырайық :
АВ= ЖС (бүйір жақтары )
∠ВАС = вс ВСА = х (АС негізіндегі бұрыштар)
Үшбұрыштың сыртқы бұрышы онымен байланысты емес екі бұрыштың қосындысына тең, сондықтан :
∠СІЗ = ВС ВСА = В В : 2 ⇒ ВАС СІЗ = ВС ВСА = 112: 2 = 56°
Сыртқы ∠В және АВ АВС-іргелес бұрыштар .
Іргелес бұрыштардың қосындысы 180°
∠АВС = 180-В В = >АВ АВС = 180-112 = 68°
Объяснение:
Осы сслыкага кир суреті бар
https://ru-static.z-dn.net/files/d26/758250d4cc2906d11b04a9dec12791d2.png
Объяснение:
Проведем радиус из точки О к точке Е. таким образом АЕ перпендикулярно АВ (касательная). Рассмотрим АЕОД. АДО=АЕО=90, значит два остальных угла также по 90, АЕОД - прямоугольник. АД=ЕО=ОД(радиусы)=АЕ, АЕОД - квадрат. аналогично доказываем с ЕОСВ. Таким образом, получаем равенство сторон АД=ДО=ОС=ВС=ЕВ=ОЕ=АЕ
треугольник АЕО - равнобедренный (АЕ=ЕО) и прямоугольный. а значит углы при основании равны и каждый из них равен (180-90)/2=45, т.е. ЕАО=АОЕ=45.
Аналогично доказываем по треугольнику ОЕВ. ЕОВ=ЕВО=45.
АОВ это сумма двух углов, АОВ=АОЕ+ЕОВ. АОВ=45+45=90, что и требовалось доказать.