Пусть дан АВСД - прямоугольник,
О - точка пересечения диагоналей АС и ВД
уг АОВ : уг ВОС = 2:7
Найти: уг ВАО и уг САД -?
1) 2+7=9 частей в смежных углах АОВ и ВОС, ⇒ 180:9=20* в одной части, ⇒ уг АОВ=40*, уг ВОС=140* (по свойству смежных углов)
2) тр АОВ - р/б, т.к. ВО=АО по свойству прямоугольника (диагонали прямоуг равны и точкой пересечения делятся пополам), ⇒ уг АВО = уг ВАО ( по св-ву углов в р/б тр) уг АВО = уг ВАО = (180-40):2=70*
3) уг ВАД = 90*, так АВСД - прямоугольник по условию, ⇒уг САД (он же ОАД) = 90-уг ВАО = 90-70 = 20*
ответ: 70* и 20*
т.к. треугольник прямоугольный,значит по теореме Пифагора
AC^2+BC^2=AB^2
AB^2=100+12
AB=корень 112
AB=4корень из 7
ответ:4 корень из 7
угол B можешь найти через синус или косинус