Можно и без x и без тригонометрических функций:
Площадь трапеции=1/2(ВС+АД)*АВ=150√3
Выразим эти три стороны чрез АС:
Исходя из формулы сумм углов многоугольника, АСД действительно равностороний треугольник
т. к. угол ВАС = 30° (если АСД равносторонний и угол САД = 60°), то АС=2ВС, т. е. ВС=0,5*АС
из равносторонности АД=АС,
АВ будет высотой АСД и равно (из частной формулы для равносторонего треугольника) (√3/2)*АС⇒АВ=(√3/2)*АС
Подставляем выделенное в формулу площади трапеции:
((0,5*АС+АС)/2)*(√3/2)*АС=150√3
(1,5АС)/2)*(√3/2)*АС=150√3
((1,5√3)/4)*АС²=150√3
АС²=(150√3*4)/(1,5√3)
АС=√(600/1,5)=√400=20
1.Пусть х -это меньший угол , тогда больший 4х
составляем уравнение
×+4×=90° (по свойству пр.уг. треугольника)
5×=90
×=18-меньший угол
4×=72 больший угол
2. смотрим на чертёж и видим что сторона КН в 2 раза меньше ТН т.к. 58÷2=29, значит по свойству пр.уг треугольника мы знаем, что напротив угла 30° лежит катетер равный половине гипотенузы. Исходя из данных можно понять что в нашем треугольнике угол 30° будет угол КТН
тогда вычислим угол КНТ
КНТ=90°-30°=60°(по свойству пр.уг треугольника)
угол КНт и угол ТНF смежные, значит их сумма равна 180°. исходя из этого можно вычислить угол THF
THF=180°-60°=120°
3.угол DOC смежный с углом BOC ,значит
DOC=180°-132°=48°
Поскольку ВD является биссектрисы прямого угла , то угол KBD =45°
тогда угол ВКО =180°-(45°+48°)=87°
тогда смежный ему угол АКО=180-87°=93°
угол ОСВ=180°-(45°+132°)= 3°
поскольку СК биссектриса то она поделилась угол ВСА пополам,значит ВСА=2×3=6°
тогда можем найти второй острый угол треугольника ВАС
уголВАС=90°-6°=84°
ОТВЕТ: УГОЛ ВАС=84°, УГОЛ ВСА=6°
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
BCD+CDA=180
ACD=180-(60+60)=60 => треугольник ACD- равнестороний
В треугольнике ABC угол BAC=30 градусов , то есть сторона лежащая против угла 30 градусов равна половине гипотенузы
Пусть BC=x, тогда AD=AC=CD=2x
H=AB=AC*cos(30)=2x√3/2=x√3
s=(a+b)*h/2
150√3=(x+2x)x√3/2
300√3=3x^2√3
x^2=100=> x=10
тоесть
AC=2x=20