Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Существует такое свойство: в прямоугольном треугольнике напротив угла в 30 градусов лежит катет, в два раза меньше гипотенузы.
Проведя, высоты АЕ и ВЕ', мы разбиваем трапецию на два прямоугольных треугольника и прямоугольник. Так как трапеция равнобокая, то эти два треугольника равны. Рассмотрим один из них. Гипотенуза = 18. Известно, что один из углов треугольника = 60, значит второй = 30, следовательно сторона, которая лежит напротив угла в 30 градусов равна половине гипотенузы, т.е. равна 9 см. Назовём основания трапеции: х ( меньшее основание) и у.
Из треугольников следует, что у=9+9+х=18+х. По условию у+х=50. Подставим. 18+х+х=50 2х=32 х=16