Треугольники АСД и АВС равнобедренные по условию. ∠ВСА=∠САД как накрест лежащие при параллельных АД и ВС и секущей АС, значит углы при основаниях в тр-ках АВС и АСД равны. ВМ⊥АС, СК⊥АД. Пусть ∠ВАС=α, ВС=х, АС=у, тогда АМ=у/2, АД=ВС+СД=х+у. В тр-ке АВМ АМ=АВ·cosα или у/2=х·cosα ⇒ y=2x·cosα. В тр-ке АСК АК=АС·cosα или (х+у)/2=у·cosα, (x+2x·cosα)/2=2x·cos²α, x+2x·cosα=4x·cos²α, x сокращается, 4cos²α-2cosα-1=0, решаем как квадратное уравнение с неизвестным cosα ⇒⇒ cosα₁=(1-√5)/4, -1<х<0 - угол тупой cosα₂=(1+√5)/4, α=arccos(1+√5)/4=36°. В трапеции АВСД: ∠А=2α=72°, ∠В=180-∠А=108°, ∠Д=α=36°, ∠С=180-∠Д=144° - это ответ.
Высота правильной пирамиды проецируется точно в центр основания, которым в данном случае является правильный треугольник. Высота, боковое ребро и отрезок, соедияющий центр основания с его вершиной, образуют прямоугольный треугольник, в котором боковое ребро является гипотенузой, и ее можно найти, используя теорему Пифагора. Но нам неизвестен катет - тот самый отрезок между центром и вершиной основания. Обратим вниание, что этот отрезок является радиусом окружности, описанной вокруг основания-треугольника. Радиус описанной окружности можно вычислить по формуле: R = a(3^0,5)/3, где а - сторона треугольника, (3^0,5) - корень из трех. В нашем случае радиус равен: R = 6(3^0,5)(3^0,5)/3 = 63/3 = 6. Боковая грань равна: (3^2 + 6^2)^0,5 = (9 + 36)^0,5 = 45^0,5 = 35^0,5 (три корня из пяти). Так что задачу ты решила верно и без моей не стоило беспокоиться. :)
∠ВСА=∠САД как накрест лежащие при параллельных АД и ВС и секущей АС, значит углы при основаниях в тр-ках АВС и АСД равны.
ВМ⊥АС, СК⊥АД.
Пусть ∠ВАС=α, ВС=х, АС=у, тогда АМ=у/2, АД=ВС+СД=х+у.
В тр-ке АВМ АМ=АВ·cosα или у/2=х·cosα ⇒ y=2x·cosα.
В тр-ке АСК АК=АС·cosα или (х+у)/2=у·cosα,
(x+2x·cosα)/2=2x·cos²α,
x+2x·cosα=4x·cos²α, x сокращается,
4cos²α-2cosα-1=0, решаем как квадратное уравнение с неизвестным cosα ⇒⇒
cosα₁=(1-√5)/4, -1<х<0 - угол тупой
cosα₂=(1+√5)/4,
α=arccos(1+√5)/4=36°.
В трапеции АВСД:
∠А=2α=72°,
∠В=180-∠А=108°,
∠Д=α=36°,
∠С=180-∠Д=144° - это ответ.