1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
а² = b² + c² - 2*b*c*cos(∠A)
cos(∠A) = (b² + c² - а²)/(2*b*c)
cos(∠A) = (3.4² + 4.9² - 1.9²)/(2*3.4*4.9) = (34² + 49² - 19²)/(2*34*49) = (1156 + 2401 - 381)/(2*34*49) = 47/49
∠A = arccos (47/49) ≈ 16.43°
Аналогично для второго угла
в² = а² + c² - 2*а*c*cos(∠В)
cos(∠В) = (а² + c² - в²)/(2*а*c)
cos(∠В) = (1.9² + 4.9² - 3.4²)/(2*1.9*4.9) = 803/931
∠В = arccos (803/931) ≈ 30.40°
И для третьего можно воспользоваться тем, что сумма углов треугольника равна 180°
∠С = 180-∠А-∠В = 180 - arccos (47/49) - arccos (803/931) ≈ 133.17°