М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NikoBellic99
NikoBellic99
06.05.2021 12:38 •  Геометрия

В треугольнике АВС известны стороны АВ = 30 см, ВС = 18 см и АС = 24 см. Сколько общих точек имеет окружность с центром в точке В и радиусом 18 см со стороной АС?

👇
Ответ:
asabina2005
asabina2005
06.05.2021

1

Объяснение:

ответ:1

4,6(81 оценок)
Открыть все ответы
Ответ:
zhorik2006nice
zhorik2006nice
06.05.2021

драпежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасаты

4,5(97 оценок)
Ответ:
skvorcova19991993
skvorcova19991993
06.05.2021

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

или

15° и 75°

Объяснение:

Обозначим в прямоугольном треугольнике

катеты как a, b

гипотенузу как с (с = 4)

и углы как \alpha \: u \: \beta

Причем углы связаны формулой

\alpha \: = \: 90^o - \beta < = \alpha \: = \: \frac{\pi}{2} - \beta

Тогда площадь треугольника, равная 2, равна половине произведения катетов:

S = \frac{1}{2} \cdot{a}\cdot{b} = 2

Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла

Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:

\cos\alpha = \frac{a}{c} = a = c \cdot \cos \alpha \\ \sin\alpha = \frac{b}{c} = b = c \cdot \sin \alpha \\

Т.к. с = 4, получаем:

a = 4 \cos \alpha \\ b = 4 \sin \alpha \\S = \frac{1}{2} \cdot{a}\cdot{b} = 2 \\ \frac{1}{2} \cdot 4\sin\alpha\cdot{4cos\alpha}=2

Получаем ригонометрическое уравнение:

\frac{1}{2} \cdot4\sin\alpha\cdot{4cos\alpha}=2 \\ 4\sin\alpha\cdot{4cos\alpha}=4 \\ 4\sin\alpha\cdot{cos\alpha}=1\\ 2\sin\alpha\cdot{cos\alpha}= \frac{1}{2 }\\ \sin 2\alpha = \frac{1}{2} \\ 2\alpha = ( - 1)^{k} \arcsin( \frac{1}{2} ) + \pi{k}, k \in Z

\arcsin( \tfrac{1}{2} ) = \frac{\pi}{6} ; \: \pi -\arcsin( \tfrac{1}{2} ) = \frac{5\pi}{6} \\ 2\alpha = ( - 1)^{k} \cdot\frac{\pi}{6} + \pi{k} =\bigg[ \large^{ \frac{ \pi}{6} + 2 \pi{n}, \: \: n \in Z } _{\frac{5\pi}{6} + 2\pi{m} , \: m \in Z} \\ \alpha = \bigg[\large^{ \frac{ \pi}{12} + \pi{n}, \: \: n \in Z } _{\frac{5\pi}{12} + \pi{m}, \: \: m \in Z } \:

Т.к. мы ищем углы в прямоугольном треугольнике, то

0 \leqslant \alpha \leqslant \frac{\pi}{2}

Соответственно попадают в этот интервал только следующие полученные углы:

0 \leqslant \frac{\pi}{12} + \pi{n} \leqslant \frac{\pi}{2} , \: \: n \in Z \\ 0 \leqslant \frac{1}{12} + {n} \leqslant \frac{1}{2} , \: \: n \in Z \\ - \frac{1}{12} \leqslant \frac{1}{12} + {n} - \frac{1}{12} \leqslant \frac{1}{2} - \frac{1}{12} , \: \: n \in Z \\ - \frac{1}{12} \leqslant {n} \leqslant \frac{5}{12} , \: \: n \in Z = n = 0 \\ \alpha = \frac{ \pi }{12} \\

0 \leqslant \frac{5\pi}{12} + \pi{m} \leqslant \frac{\pi}{2} , \: \: m\in Z \\ 0 \leqslant \frac{5}{12} + {m} \leqslant \frac{1}{2} , \: \: m \in Z \\ - \frac{5}{12} \leqslant \frac{5}{12} + {m} - \frac{5}{12} \leqslant \frac{1}{2} - \frac{5}{12} , \: \: m\in Z \\ - \frac{5}{12} \leqslant {m} \leqslant \frac{1}{12} , \: \: m \in Z = m= 0 \\ \alpha = \frac{ 5 \pi }{12} \\

Итак, мы получили 2 пары углов:

\small \alpha = \frac{\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{\pi}{12} = \frac{5\pi}{12} \\ \small \alpha = \frac{5\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{5\pi}{12} = \frac{\pi}{12} \\

Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.

Итак, получаем ответ:

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

4,7(21 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ