6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.
Объяснение:
Печать
Рейтинг: 4 / 5Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда не активна
, оцените
Эллипс, гипербола, парабола. Директориальное свойство эллипса и гиперболы.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Эллипс.
Эллипс с каноническим уравнением
x2
a2
+
y2
b2
=1,a≥b>0, имеет форму изображенную на рисунке.
Параметры a и b называются полуосями эллипса (большой и малой соответственно). Точки A1(−a,0), A2(a,0), B1(0,−b), и B2(0,b), его вершинами. Оси симметрии Ox и Oy - главными осями а центр симметрии O− центром эллипса.
Точки F1(−c,0) и F2(c,0), где c=
√
a2−b2
≥0, называются фокусами эллипса векторы
¯
F1M
и
¯
F2M
− фокальными радиус-векторами, а числа r1=|
¯
F1M
| и r2=|
¯
F2M
|− фокальными радиусами точки M, принадлежащей эллипсу
Объяснение:
Угол 1 =углу 2
=>треугольник
АОВ=СОД
ВО=ОД=АО=ОС-радиусы
Тогда АВ=СД - как соответствующие стороны у равных треугольника