Периметр паралелограма = 112 см. Обчисліть площу палалелограма, якщо відстань між більшими його сторонами та відстань між меншими його сторонами дорівнює відповідно: 8 см, і 20 см.
Пусть данная пирамида будет МАВСД. Ищем угол МВО. МО- высота пирамиды, ее основание О совпадет с точной пересечения диагоналей АВСД. Т,к. АВСД - квадрат, ВО =ВД/2 Все ребра пирамиды равны. Следовательно, в её основании квадрат, а боковые грани - правильные треугольники. Пусть ребро пирамиды равно а. Тогда диагональ АВСД равна а√2, а ВО равно (а√2):2 Косинус угла МВО равен ВО:ВМ cos МВО= [ (а√2):2 ]:а=(√2):2 - это косинус угла 45° Искомый угол между боковым ребром и плоскостью основания пирамиды равен 45°
основание квадрат - пусть сторона =b
тогда диагональ основания d =b√2
боковые ребра наклонены к плоскости основания под углом 60 градусов.
Значит диагональное сечение пирамиды равносторонний треугольник
тогда боковое ребро c=d =b√2
тогда апофема боковой грани
A^2= c^2 - (b/2)^2=(b√2)^2 - (b/2)^2 =b^2 (2-1/4)=b^2*7/4
A =b*√(7/4) = b/2*√7
тогда КОСИНУС линейного угла двугранного угла при основании
cos<a = (b/2)/A = (b/2)/(b/2*√7) = (b/2)/(b/2*√7) = 1/√7
<a = arccos 1/√7 (или 67.79 град )