В правильный треугольник, сторона которого равна а, вписан круг. Из вершины радиусом, равным половине его стороны, проведена другая окружность. Найти площадь общей части этих кругов.
Наиболее очевидный частный случай, если трапеция равнобедренная. решения для этого случая выше. рассмотрим вариант с прямоугольной трапецией. пусть высота (она же одна из сторон) равна х, вторая сторона у. тогда периметр х+у+9+15=34 => х+у=10 теперь рассмотрим треугольник, который образует сторона, не образующая прямой угол с основанием, высота опущенная из точки пересечения этой стороны с малым основанием на большое основание и отрезок между этой высотой и и точкой пересечения этой стороны с большим основанием (треугольник cdh, см рисунок). hd=ad-ah, т. к. ан=вс=9, а ad=15, то hd=15-9=6 по теореме пифагора: cd^2=ch^2+hd^2 или cd^2-ch^2=hd^2 т. е. у^2-x^2=36 решаем систему уравнений: { х+у=10 {у^2-x^2=36 например, таким способом: домножаем первое уравнение на (х-у) и складываем его со вторым. получаем уравнение: 10(х-у) -36=0, откуда х-у=3,6. складывая его с первым уравнением, получаем 2х=13,6 т. о. х=6,8 s=((a+b)/2)*h а=9; b=15; h=x=6,8 s=((9+15)/2)*6.8=81.6
Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
Объяснение:
S1=(a/2√3)²/2 ×(π× 120°/180° - sin( 120°))