Двугранный угол равен 120° градусов. Внутри его дана точка A, которая находится на расстоянии 33 см от обеих граней угла. Чему равно расстояние от точки A до ребра двугранного угла?
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
В параллелограмме АBCD угол А равен углу С, угол B равен углу D. а) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за 2Х (т.к один больше другого в 2 раза). Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + 2Х = 180, 3Х = 180, Х = 60. Соответственно второй угол будет равен 120 градусам. б) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за Х-24. Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + Х - 24 = 180. 2Х = 156. Х = 78. Следовательно, втрой угол будет равен 76-24 = 52.
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
Объяснение: