М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Islami1
Islami1
09.08.2021 18:08 •  Геометрия

Длинное основание EN равнобедренной трапеции EFGN равно 12 см, короткое основание FG и боковые стороны равны. Определи периметр трапеции, если острый угол трапеции равен 80°.

(В расчётах округли числа до сотых.)
PEFGN= ???

👇
Ответ:
Mariyana10
Mariyana10
09.08.2021
Для решения данной задачи нам необходимо использовать свойство равнобедренной трапеции, которое гласит: диагонали равнобедренной трапеции равны между собой и каждая диагональ является осью симметрии трапеции. Для начала, нам нужно найти длину диагонали.

Так как это равнобедренная трапеция, диагонали равны между собой и каждая равна полусумме длин оснований. Таким образом, мы можем записать следующее уравнение:

(EN + FG) / 2 = FG

Так как FG равно длине боковой стороны, мы можем обозначить его как x и переписать уравнение следующим образом:

(EN + x) / 2 = x

Далее, мы можем решить это уравнение относительно x, чтобы найти длину боковой стороны FG.

EN + x = 2x

EN = x

Таким образом, мы нашли, что длина боковой стороны FG равна длине основания EN.

К сожалению, для дальнейшего решения задачи нам не хватает информации о длине основания EN. Мы не можем определить периметр трапеции без этой информации.

Каждый знак равенства и неравенства должен быть описан в обосновании, чтобы ответ был понятен школьнику. Мы использовали свойство равнобедренной трапеции и записали уравнение для поиска длины боковой стороны FG, но не смогли решить его относительно x без дополнительной информации о длине основания EN.
4,7(47 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ