Две прямые AB и CD ( рис.11 ) называются параллельными, если они лежат в одной плоскости и не пересекаются, сколько бы их ни продолжать. Обозначение: AB|| CD. Все точки одной параллельной прямой находятся на одинаковом расстоянии от другой параллельной прямой. Все прямые, параллельные одной прямой, параллельны между собой. Принято считать, что угол между параллельными прямыми равен нулю. Угол между двумя параллельными лучами равен нулю, если у них одинаковые направления, и 180°, если их направления противоположны. Всеперпендикуляры ( AB, CD, EF, рис.12 ) к одной и той же прямой KMпараллельны между собой. Обратно, прямая KM, перпендикулярная к одной из параллельных прямых, перпендикулярна и к остальным. Длинаотрезка перпендикуляра, заключённого между двумя параллельными прямыми, есть расстояние между ними.
1) В первом условии получается, что дан равносторонний треугольник. У такого треугольника все углы по 60 градусов. Значит, cosA = cos 60° = 0,5. 2) Во втором случае дан равнобедренный треугольник. В нем угол А будет при основании, а значит он острый, поэтому тангенс угла будет числом положительным. Теперь по теореме косинусов имеем (достаточно нарисовать, чтобы понять обозначения): BC² = AC² + AB² - 2*AC*AB*cosA 169 = 169 + 100 - 260*cosA 260*cosA = 100 cosA = 100/260 = 5/13 По основному тригонометрическому тождеству имеем: sin²A + cos²A = 1 откуда sinA = √(1 - cos²A) = √(1 - (25/169)) = 12/13 И находим тангенс: tgA = sinA/cosA = 12/13 ÷ 5/13 = 12/5 = 2,4
Две прямые AB и CD ( рис.11 ) называются параллельными, если они лежат в одной плоскости и не пересекаются, сколько бы их ни продолжать. Обозначение: AB|| CD. Все точки одной параллельной прямой находятся на одинаковом расстоянии от другой параллельной прямой. Все прямые, параллельные одной прямой, параллельны между собой. Принято считать, что угол между параллельными прямыми равен нулю. Угол между двумя параллельными лучами равен нулю, если у них одинаковые направления, и 180°, если их направления противоположны. Всеперпендикуляры ( AB, CD, EF, рис.12 ) к одной и той же прямой KMпараллельны между собой. Обратно, прямая KM, перпендикулярная к одной из параллельных прямых, перпендикулярна и к остальным. Длинаотрезка перпендикуляра, заключённого между двумя параллельными прямыми, есть расстояние между ними.