А) АВ1 принадлежит плоскости АА1В1В
Д1С принадлежит плоскости ДД1С1С
Эти плоскости параллельные, тк это грани куба, следовательно эни не пересекаются
Значит, прямые, лежащие в этих плоскостях будут скрещивающимися
Б) параллельно переносим Д1С в плоскость АА1В1В, чтобы совместить точки В1 и С
Тк эти прямые были диагоналями сторон куба, между ними будет угол 90 градусов
В) ВВ1 принадлежит плоскости АА1В1В, эта плоскость параллельна плоскости СС1Д1Д.
А все прямые лежащие в плоскости, которая параллельна этой плоскости тоже параллельны той плоскости
ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.