Объяснение:
обозначим вк медиану к ас. она же будет и высотой в треугольнике авс, поскольку он равнобедренный. медианы делятся в точке пересечения в отношении 2/1, считая от вершины.по условию во=24, тогда ок=12. по теореме пифагора ак=корень из(аоквадрат-окквадрат)=корень из(162-144)=3корня из 2.тогда основание ас=2*ак=6 корней из 2. обозначим mn отрезок l. треугольники мвn и авс подобны поскольку мn параллельна ас. тогда мn/во=ас/вк. мn/24=(6 корней из 2)/36, отсода искомая длина l=мn=4 корня из 2.
или
sinx=sqrt(1-cos^2x)
sinx=sqrt(1-1/25)=2sqrt(6)/5
а дальше по основной формуле для нахождения тангенса
или
а
i\
i \
i \
└ㅡ \ㅡ ㅡ ㅡ ㅡ e
c в
дано : ∠abe = 150º, ac + ab = 12cм
найти : ав
решение : т.к. ∠abe = 150º , то ∠abс = 30º ⇒ ас = 0.5 * ав
ac + ab = 12cм
0.5 * ав + ав = 12
1.5 ав = 12
ав = 12 / 1.5
ab = 8
ответ : ав = 8 см
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).