а) ответ да. Прямые параллельны, если они лежат на одной плоскости, перпендикулярной двум первым плоскостям.
красные прямые лежат в параллельных плоскостях и при этом параллельны в третьей плоскости
б) ответ нет. Признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Т. е. если прямая по условию находится в параллельной плоскости, она не как не может эту плоскость пересекать
AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ;
Из ΔAMC :
AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ;
но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому
AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ;
суммируем (1) и (2) получаем
AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ;
но BC² =AB² +AC²- 2AB *AC*cosA поэтому :
4AM² =AB² +AC² + 2AB *AC*cosA.
* * *
Можно продолжать медиана MD =AM и M соединить с вершинами
B и C. Получится параллелограмм ABDC , где верно
2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .