Уравнение окружности радиуса R с центром в точке C (a; b) имеет вид:
(x – a)² + (y – b)² = R².
1. Радиус — расстояние от центра окружности до любойточки на окружности. Таким образом, радиус будет равен расстоянию от точки c (2; 1) до точки d (5; 5).
Расстояние между точками A (x₁; y₁) и B (x₂; y₂) вычисляется по формуле:
AB = √((x₁ - x₂)² + (y₁ - y₂)²).
Таким образом, расстояние между точками c (2; 1) и d (5; 5) будет равно:
cd = R = √((2 - 5)² + (1 - 5)²) = √((- 3)² + (- 4)²) = √(9 + 16) = √25 = 5.
1. Подставим известные значения в уравнение окружности радиуса R = 5 с центром в точке c (2; 1):
(x – 2)² + (y – 1)² = 5²;
(x – 2)² + (y – 1)² = 25.
ответ: (x – 2)² + (y – 1)² = 25.
1) Основание данной призмы - это проекция полученного сечения на плоскость основания.
Отношение площади основания к площади сечения равно косинусу угла между ними. S(ABCDEF)/S(ABC₂D₁E₁F₂)=cosα.
Площадь правильного шестиугольника: S₆=3a²√3/2.
В тр-ке ВСD по т. косинусов BD²=BC²+CD²-2BC·CD·cos120°,
BD²=a²+a²-2a²·(-0.5)=3a².
BD=a√3.
В тр-ке BD₁D BD₁=√(DD₁²+BD²)=√(a²+3a²)=2a.
cosα=BD/BD₁=a√3/2a=√3/2.
S(ABC₂D₁E₁F₂)=S₆/cosα=(3a²√3/2):(√3/2)=3a² - это ответ.
2) в основании правильный треугольник, тогда его высота по Т.Пифагора: СН=кор(4^2-2^2)=кор12=2кор3
рассмотрим треугольник МНС-прямоугольный (угол С=90), угол МНС=45, тогда угол НМС тоже 45, следовательно, трреугольник равнобедренный, тогда НС=МС=2кор3
т.к. СС1=2МС=4 кор3
тогда площадь боковой поверхности
S=Pосн*Н=(4+4+4)*4кор3=48 кор3