2) ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
СВ - общая сторона
АВ = ВЕ - из равнобедренного ΔАВЕ
Значит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см
3) а) AD ⊥ пл. АВС, следовательно, AD ⊥ СВ;
AD ⊥ BC, AC⊥ CB, то по теореме о 3-х перпендикулярах DC ⊥ ВС, то есть треугольник CBD - прямоугольный.
б) DCB = 90*, BD2 = DC2 + BC; BD = (вектор)4 + 6 = 10
Объяснение:
Задание 1.
Пусть х -основание треугольника, тогда боковые стороны (х-2).
Составим уравнение х=(х-2)+(х-2)=32
отсюда х=12, а боковая сторона 12-2=10см.
ответ: боковые стороны треугольника равны 10см.
Задание 2.
Рассмотрим треугольник HCB (он прямоугольный, т.к. CH-высота и угол HCВ равен 30градусам по условию), значит угол В равен 180-90-30=60градусов.
Также мы знаем, что катет лежащий против угла в 30 градусов равен половине гипотенузы, значит поскольку катет ВН равен 3, то гипотенуза СВ равна 3*2=6.
Теперь рассмотрим треугольник ACB (он прямоугольный Угол С равен 90градусов, т.к по условию AC параллельно СВ и угол В равен 60 градусов), значит угол А равен 180-90-60=30градусов.
В треугольнике ACH угол ACH равен 180-90-30=60градусов.
Треугольники ACH и HCB равны. Значит AC=CB равно 6.
По теореме Пифагора 6^2+6^2=72.
Значит АВ равна корень из 72