Из площади трапеции ABCD найдем высоту трапеции CH
\displaystyle \tt S_{ABCD}=\frac{AD+BC}{2}\cdot CH~~~\Rightarrow~~~ CH=\frac{2S_{ABCD}}{AD+BC} =\frac{2\cdot84}{4+3}= 24S
ABCD
=
2
AD+BC
⋅CH ⇒ CH=
AD+BC
2S
ABCD
=
4+3
2⋅84
=24
Так как AD || MN и BC || MN, то CK ⊥ MN. Высота CK в два раза меньше высоты CH, т.е. CK = 24/2 = 12.
Средняя линия трапеции равна полусумме основания,т.е.
\tt MN=\dfrac{AD+BC}{2}=\dfrac{4+3}{2}=3.5MN=
2
AD+BC
=
2
4+3
=3.5
\tt S_{BCNM}=\dfrac{MN+BC}{2}\cdot CK =\dfrac{3.5+3}{2}\cdot12= 57S
BCNM
=
2
MN+BC
⋅CK=
2
3.5+3
⋅12=57 кв. ед.
ответ: 57 кв. ед..
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2