Соединим точки A и D, D и C, С и B. Пусть AC∩BD=E.
∠ADB и ∠ACB вписанные и опирающиеся на хорду AB. Тогда они равны. Т.к. AB - диаметр, ∠ADB = ∠ACB = 90°.
Применив т. об отрезках пересекающихся хорд к хордам AC и DB, получим AE*EC=DE*EB.
Обозначим DE=a, EB=b, AE=c → с*EC=a*b → EC=a*b/c
AC ּ AE + BD ּ BE = (AE+EC)*AE+(BE+ED)*BE=c²+a*b+b²+a*b=c²+2ab+b²=(c²-a²)+(a+b)²=[по т. Пифагора для ΔADE (c²-a²)=AD². DB²=(DE+EB)²=(a+b)²]=AD²+DB²=[по т. Пифагора для ΔADB]=AB²
Т.к. AB - диаметр окружности, то значение AC ּ AE + BD ּ BE не зависит от положения точки E.
Sбок=1/2Росн*L (L-апофема)
как я понял:" сторона правильной треугольной пирамиды равна 3 см" - это сторона в основании пирамиды, т.е сторона правильного треугольника.(уточнять надо)
значит нам надо найти радиус вписанной окружности.
r=(a*3^1/2)/6 (3^1/2 - корень из трех)
r= 3^1/2*1/2 (корень из трех делить на два)
т.к. из теоремы о трех перпендикуляров радиус вписанной окружности - проекция(наклонная - апофема, высота(пирамиды) - перпендикуляр), то cos45=r/L=>
L=r/cos45=(3^1/2*1/2)/2^1/2*1/2=(3^1/2)/2^1/2 (корень из трех делить на корень из двух)
P=3+3+3=9
Sбок=4.5*(3^1/2)/2^1/2