Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому
PQ:PL = PR:PQ: ,
откуда
PQ^2 = PL * PR.
1. дан тр. ABC, BD медиана, тк треугольник равнобедренный, то BD делит его основание пополам. из этого AD=DC
2. тк треугольник равнобедренный, то медиана BD перпендикулярна к AC ( уг. ADB= уг BDC )
3. значит тр. ADC и BDC прямоугольные и равные ( BD общая, углы равны, AB=BC )
по теореме пифагора найдем AD тр ABD
AD^2= AB^2-BD^2
AD= корень кв. 13^2-12^2
AD=корень кв. 169-144
AD= корень кв. 25
AD=5
4. Значит AD=DC= 5 см AC=10см
5. Pтр= 13+13+ 10 =36 см
6. Sтр= 1/2 AC*BD
Sтр= 1/2* 10*12= 60 см
ответ: Sтр=60 см, Pтр = 36 см