Точка пересечения O — серединная точка для обоих отрезков AD и BC.
Найди величину сторон AB и BO в треугольнике ABO, если DC = 45,5 см и CO = 29,2 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
AC1.png
А. Так как отрезки делятся пополам, то
1. сторона BO в треугольнике ABO равна стороне в треугольнике DCO;
2. сторона AO в треугольнике ABO равна стороне в треугольнике DCO.
Угoл BOA равен углу как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
AB =
см;
BO =
см.
проводим высоту СН на АД
Площадь трапеции =1/2*(АД+ВС) * СН
Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК
площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС)
т.е. площадь треугольника АСК=площадь трапеции АВСД,
площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр
полупериметр треугольника АСК=(12+9+15)/2=18
площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД