Объяснение:
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
6=( а+2а):2
а+2а=12
3а=12 ⇒ а=12:3=4
Меньшее основание трапеции равно 4 см.
Большее 4•2=8 см
ответ: AD ≈ 11,95 см .
Объяснение:
У ΔАВС ВС = 8 см ; АС = 12 см ; АВ = 15 см . Найбільшою є
висота , до найменшої сторони тр - ника . За теоремою
косинусів ∠С - тупий . Висота AD проводиться до продовження
сторони ВС . Нехай CD = x см , тоді BD = ( x + 8 )².
Із прямок. ΔACD AD² = 12² - x² .
Із прямок. ΔABD AD² = 15² - ( x + 8 )² .
Із 2- ох останніх рівностей маємо : 12² - x² = 15² - ( x + 8 )² ;
144 - х² = 225 - х² - 16х - 64 ;
16х = 17 ;
х = 17/16 = 1 1/16 , тоді висота AD = √( 12² - (17/16 )² ) = √36575/16 =
= 5√1463/16 ≈ 11,95 ( см ) ; AD ≈ 11,95 см .
Если прямая СD касается окружности в точке М, то всякая другая точка прямой СD будет находиться вне круга, ограниченного этой окружностью, следовательно, расстояние от каждой точки прямой СD до центра, кроме точки М, будет больше расстояния ОМ — радиуса окружности. Значит, этот радиус есть наименьший из отрезков, соединяющих точку О с точками прямой СD, поэтому ОМ _|_ СD.