1)У этих треугольников сторона AC - общая. Также, в равнобедренном треугольнике углы при основании равны, а значит два угла CAK и PCA равны. Углы KCA и СAP тоже равны, так как биссектриса разбивает угол на две равные части. Отсюда получаем, равные треугольники по второму признаку равенства треугольников.
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Параллельные прямые, которые исходят из точек С, Р и К перпендикулярны к прямой С1К1. Проведем CN, NP1,C1M, ML так, что CMPN и MLK1C1 - прямоугольники. Из условия СС1 = 3 см, РР1 = 5 см. Поскольку СС1Р1N - прямоугольник (три угла равны 90 градусов), то CC1 = NP1 = 3 см. Аналогично из прямоугольника MPP1C1: MC1 = PP1 = 5 см, из прямоугольника MLK1C1: МС1 = LK1 = 5 см. CM = NP = NP1 + P1P, CM = 3 + 5 = 8 см. Рассмотрим треугольники CMP и KLP: СР = РК по условию, <MPC = <KPL как вертикальные, <CMP = <KLP = 90 градусов. Следовательно, треугольника CMP и KLP равны по стороне и двум прилежащим к ней углам. Исходя из равенства треугольников, CM = KL = 5 см. KK1 = KL + LK1. Имеем: KK1 = 8 + 5 = 13 см. ответ: 13 см.
Объяснение:
1)У этих треугольников сторона AC - общая. Также, в равнобедренном треугольнике углы при основании равны, а значит два угла CAK и PCA равны. Углы KCA и СAP тоже равны, так как биссектриса разбивает угол на две равные части. Отсюда получаем, равные треугольники по второму признаку равенства треугольников.