Площадь треугольника - половина произведения основания на высоту к основанию.
Высота - перпендикуляр к основанию.
29) S= 20*7/2 =70
30) S= 33*8/2 =132
В прямоугольном треугольнике катеты перпендикулярны, поэтому один катет считаем основанием, а другой - высотой к основанию. Площадь равна половине произведения катетов.
31) S= 8*15/2 =60
Катет против угла 30 равен половине гипотенузы. Отсюда по теореме Пифагора находим отношение сторон.
В треугольнике с углами 30, 90 стороны относятся как 1:√3:2
32) S= 8*8√3/2 =32√3, ответ: 32√3/√3 =32
33) S= 5*5√3/2 =12,5 √3, ответ: 12,5 √3/√3 =12,5
В прямоугольном треугольнике сумма острых углов равна 90. Следовательно, если один острый угол 45, то и другой 45. Углы при основании равны - треугольник равнобедренный.
Прямоугольный треугольник с углом 45 - равнобедренный.
34) S= 7*7/2 =24,5
35) S= 12*12/2 =72
36) По теореме Пифагора x= √(41^2 -9^2) =√((41-9)(41+9)) =√(32*50) =40
Получается 4 равных треугольника. Найдем углы одного, такие же углы будет и у лстальных. Диагонали ромба пересекаются под прямым углом, то есть угол 1 треугольника.= 90 град. острый угол ромба равен 30 по условию, значит другой (тупой) = 150 град. так как сумма внутренних углов при параллельных прямых и секущейся равна 180 град (180-30)=150. Диагонали ромба есть и биссектрисами углов, то есть 30/2 = 15, 150/2 = 72. Итак, углы одного треугольника равны 90, 75,15 градусов. В остальных точно такие же.
Если провести из прямого угла к гипотенузе высоту, то гипотенуза основанием высоты разделится на два отрезка. Каждый такой отрезок называется проекцией соседнего катета. (См. рисунок). Гипотенуза АВ=25, катет СВ=20. Так как высота прямоугольного треугольника делит его на подобные, проекцию катета можно вычислить по т.Пифагора из подобия треугольников. Для этого сначала находят второй катет. Но из того же подобия выведено, что: Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. ⇒ ВС²=АВ•ВН 400=25•ВН, откуда проекция катета ВС на гипотенузу ВН+400:25=16.
Площадь треугольника - половина произведения основания на высоту к основанию.
Высота - перпендикуляр к основанию.
29) S= 20*7/2 =70
30) S= 33*8/2 =132
В прямоугольном треугольнике катеты перпендикулярны, поэтому один катет считаем основанием, а другой - высотой к основанию. Площадь равна половине произведения катетов.
31) S= 8*15/2 =60
Катет против угла 30 равен половине гипотенузы. Отсюда по теореме Пифагора находим отношение сторон.
В треугольнике с углами 30, 90 стороны относятся как 1:√3:2
32) S= 8*8√3/2 =32√3, ответ: 32√3/√3 =32
33) S= 5*5√3/2 =12,5 √3, ответ: 12,5 √3/√3 =12,5
В прямоугольном треугольнике сумма острых углов равна 90. Следовательно, если один острый угол 45, то и другой 45. Углы при основании равны - треугольник равнобедренный.
Прямоугольный треугольник с углом 45 - равнобедренный.
34) S= 7*7/2 =24,5
35) S= 12*12/2 =72
36) По теореме Пифагора x= √(41^2 -9^2) =√((41-9)(41+9)) =√(32*50) =40
S= 9*40/2 =180