СD - отрезок касательной. Продолжение АВ = АD - секущая. Рассмотрим рисунок, данный во вложении. На секущей АД расположение обозначений идет в порядке: А-Е-В-D, А и В - на окружности. СЕ- биссектриса, АЕ=18, ВЕ=10 Угол, образованный касательной ДС к окружности и секущей ВС, проведенной через точку касания, равен половине дуги, заключенной между его сторонами. Следовательно, угол DАС=углу ВСD. В треугольниках АDС и ВDС по два равных угла: угол D - общий, угол ВСD =углу DАС, следовательно, они подобны. В подобных треугольниках соответственные стороны лежат против равных углов. Найдем отношение сторон в треугольниках. Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон. Следовательно, АС:ВС=18:10 Из подобия треугольников ВDС и СDА DС:ВD=18/10 DС=18*ВD/10 Пусть ВD - внешняя часть секущей АD - равна х Тогда DС=18х/10 и АD=АЕ+ВЕ+х=28+х Квадрат длины отрезка касательной равен произведению всего отрезка секущей на его внешнюю часть. DС²=ВД*АD (18х/10)²=х(28+х) 324х²:100=28х+х² Домножив обе части уравнения на 100, получим: 324х²=2800х+100х² 224х²=2800х х=2800х:224х х=12,5 см DС=12,5*(18/10)=22,5 см -------------- [email protected]
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°